MPI, Dataflow, Streaming: Messaging for

Diverse Requirements
FEuroMPI/USA 2017 25 years of MPl Symposium

Argonne National Lab, Chicago, lllinois,
Geoffrey Fox, September 25, 2017
Indiana University, Department of Intelligent Systems Engineering
gef@indiana.edu http://www.dsc.soic.indiana.edu/ http://spidal.org

Work with Judy Qiu, Shantenu Jha, Supun Kamburugamuve, Kannan Govindarajan, Pulasthi Wickramasinghe

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Abstract: MPI, Dataflow, Streaming: Messaging for
Diverse Requirements

* We look at messaging needed in a variety of parallel, distributed, cloud
and edge computing applications.

* We compare technology approaches in MPI, Asynchronous Many-Task
systems, Apache NiFi, Heron, Kafka, OpenWhisk, Pregel, Spark and
Flink, event-driven simulations (HLA) and Microsoft Naiad.

* We suggest an event-triggered dataflow polymorphic runtime with
implementations that trade-off performance, fault tolerance, and
usability.

* Integrate Parallel Computing, Big Data, Grids

SCHOOL OF INFORMATICS, COMPUTING., AND ENGINEERING

Motivating Remarks

 MPI is wonderful (and impossible to beat?) for closely coupled parallel
computing but
* There are many other regimes where either parallel computing and/or message passing
essential

* Application domains where other/higher-level concepts successful/necessary
* Internet of Things and Edge Computing growing in importance

* Use of public clouds increasing rapidly
* Clouds becoming diverse with subsystems containing GPU’s, FPGA’s, high performance
networks, storage, memory ...
* Rich software stacks:
 HPC (High Performance Computing) for Parallel Computing less used than(?)
. ﬁpac)he for Big Data Software Stack ABDS including some edge computing (streaming
ata

* A lot of confusion coming from different communities (database, distributed,
parallel computing, machine learning, computational/data science)

VIS piegaly ONF-ERITY
k‘. SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Requirements

* On general principles parallel and distributed computing have different requirements even if
sometimes similar functionalities

* Apache stack ABDS typically uses distributed computing concepts
* For example, Reduce operation is different in MPI (Harp) and Spark
* Large scale simulation requirements are well understood
e Big Data requirements are not clear but there are a few key use types
1) Pleasingly parallel processing (including local machine learning LML) as of different
tweets from different users with perhaps MapReduce style of statistics and
visualizations; possibly Streaming
2) Database model with queries again supported by MapReduce for horizontal scaling
3) Global Machine Learning GML with single job using multiple nodes as classic parallel
computing
4) Deep Learning certainly needs HPC — possibly only multiple small systems
e Current workloads stress 1) and 2) and are suited to current clouds and to ABDS (with no HPC)
* This explains why Spark with poor GML performance is so successful and why it can ignore
MPI

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

HPC Runtime versus ABDS distributed Computing
Model on Data Analytics

Spark/Flink All Reduction MPI All Reduction

/V

Ilteration

lteration with

Broadcast Need Polymorphic Reduction capability
‘ 2 T choosing best implementation

Hadoop writes to disk and is slowest;
Spark and Flink spawn many processes and
do not support AlIReduce directly;

MPI does in-place combined reduce/
broadcast and is fastest

oy yTime

O Message

O Partially reduced result Use HPC architecture with

@ All reduced result
Mutable model
I] Parallel map tasks I Reduce task I] MPI Processes Immutable data

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Multidimensional Scaling: 3 Nested Parallel Sections

Weight
Matrix

Initial
Points - X

Distance
Matrix

—e—Flink Spark —eo—MPI MPI Compute Spark ® Flink = MPI
10E+4

1.0E+3

1.0E+2
S

pa rk 1E+02
Temperature .
Loop = 1.0E+1 .
MPI
e
1.0E+0 1E+00
4 8 16 32

0 8000 16000 24000 32000 40000 48000 56000 64000

1E+04

Time (s) log scale
m
3

Time in (s) log scale

[y
m
&
[y

No of points No of nodes

MPI Factor of 20-200 Faster than Spark/Flink

MDS execution time on 16 nodes MDS execution time with 32000
with 20 processes in each node with points on varying number of nodes.
varying number of points Each node runs 20 parallel tasks

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

g g

HPC Cloud can
be federated

Centralized HPC Cloud + loT Devices Centralized HPC Cloud + Edge = Fog + loT Devices

Implementing Twister2
to support a Grid linked to an HPC Cloud

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Serverless (server hidden) * Cloud-owner Provided Cloud-native platform for
computing attractive to user: ° Event-driven applications which

“No server is easier to e Scale up and down instantly and automatically
manage than no server” Charges for actual usage at a millisecond
granularity

GridSolve, Neos were FaaS

o senertes

Faas Container

— Paa$S Orchestrators
Gioud) (Lambs 7 L 4

N laasS
AN
Bare Metal

OpenLambda

Event-driven
Serverless computing

See review http://dx.doi.org/10.13140/RG.2.2.15007.87206

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Twister2: “Next Generation Grid - Edge — HPC Cloud”

* Original 2010 Twister paper was a particular approach to Map-Collective iterative
processing for machine learning

* Re-engineer current Apache Big Data software systems as a toolkit with MPI as an option
* Base on Apache Heron as most modern and “neutral” on controversial issues

* Support a serverless (cloud-native) dataflow event-driven HPC-Faa$S (microservice)
framework running across application and geographic domains.
e Support all types of Data analysis from GML to Edge computing

* Build on Cloud best practice but use HPC wherever possible to get high performance
* Smoothly support current paradigms Naiad, Hadoop, Spark, Flink, Storm, Heron, MPI ...

* Use interoperable common abstractions but multiple polymorphic implementations.
* i.e. do not require a single runtime

* Focus on Runtime but this implies HPC-FaaS programming and execution model

* This describes a next generation Grid based on data and edge devices — not computing
as in original Grid see |ong paper http://dsc.soic.indiana.edu/publications/Twister2.pdf

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Communication (Messaging) Models

« MPI Gold Standard: Tightly synchronized applications
e Efficient communications (us latency) with use of advanced hardware
* In place communications and computations (Process scope for state)

 Basic (coarse-grain) dataflow: Model a computation as a graph

* Nodes do computations with Task as computations and S W
edges are asynchronous communications
* A computation is activated when its input data dependencies W G
are satisfied S
. : " : Dataflow
* Streaming dataflow: Pub-Sub with data partitioned into streams W

e Streams are unbounded, ordered data tuples
* Order of events important and group data into time windows

* Machine Learning dataflow: Iterative computations
* There is both Model and Data, but only communicate the model

* Collective communication operations such as AllReduce AllGather (no differential operators in Big
Data problems

e Can use in-place MPI style communication

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Core SPIDAL Parallel HPC Library with Collective Used

DA-MDS Rotate, AllIReduce, Broadcast

Directed Force Dimension Reduction AllGather,

Allreduce

Irregular DAVS Clustering Partial Rotate,
AIIReduce Broadcast

DA Semimetric Clustering Rotate, AllReduce,
Broadcast

K-means AllIReduce, Broadcast, AllGather DAAL
SVM AllReduce, AllGather

SubGraph Mining AllGather, AllReduce

Latent Dirichlet Allocation Rotate, AllIReduce
Matrix Factorization (SGD) Rotate DAAL
Recommender System (ALS) Rotate DAAL

Singular Value Decomposition (SVD) AllGather
DAAL

* QR Decomposition (QR) Reduce, Broadcast DAAL
Neural Network AlIReduce DAAL

Covariance AllReduce DAAL

Low Order Moments Reduce DAAL

Naive Bayes Reduce DAAL

Linear Regression Reduce DAAL

Ridge Regression Reduce DAAL

Multi-class Logistic Regression Regroup, Rotate,
AllGather

Random Forest AllReduce

Principal Component Analysis (PCA) AllReduce
DAAL

DAAL implies integrated with Intel DAAL Optimized Data Analytics Library (Runs on KNL!)

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Coordination Points

* There are in many approaches, “coordination points” that can be implicit or
explicit
* Twister2 makes coordination points an important (first class) concept
e Dataflow nodes in Heron, Flink, Spark, Naiad; we call these fine-grain data flow
* |ssuance of a Collective communication command in MPI

e Start and End of a Parallel section in OpenMP

* End of a job; we call these coarse-grain data flow nodes and these are seen in workflow
systems such as Pegasus, Taverna, Kepler and NiFi (from Apache)

* Twister2 will allow users to specify the existence of a named coordination point
and allow actions to be initiated
* Produce an RDD style dataset from user specified
* Launch new tasks as in Heron, Flink, Spark, Naiad
* Change execution model as in OpenMP Parallel section

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

NiFi Workflow with Coarse Grain Coordination

- -
(il == =5y - 5 \BEOOCESEEE
NiFi Flow
[Active threads: 0 Queuved: 0 / O bytes Stats |ast refreshed: 23:14:08 EDT s 0 "o po HEs A1 ~k0 I
L
W GefFile 0 @ ConvertC SVToAvro @ —
GafFile ConventCSVToAvro I
] 0/0bytes In 0/0bytes 5 min
e A SNl 0 bytes /0 bytes ReadMrite 3""‘*5 /0 bytes S
Out 0/0bytes 5 min at doyes o
=00 C 0/ 00:00:00.000 e Tasks/Time 3 00:00:00.000 5
~ . A ~.
Name succsss Name syccess Name succsss
Queuved 0 /0 byes Queuved 0/0Dytes Queuved 0/0Dbyt2s
= - ~
@ InferAvro Schema -
InferAvroSchema @ &ggp 9
L O | C byes 5 min in 0/0byes

Out 0/0byes 5 min Out 0/0Obytes

ReadWrite [l U=l N =H S mir ReadWiite D%)%=
LEC T W 0 /00:00:00.000 5 min \ 0/00:00:00.000

@ ConvertAvroToJSON @ PutHDFS
ConvertAvroToJSON @ PutHDFS @
m : 3 byE E ~re
0 tmes D bytes 5 min
0/0 5 min
0/00 _.3 00.000
\
Name success Name suocess Name machad
Queuved 0/0byke Queuved 0/0bytes Queued 0/0byks
-~ S -~
@ ListenESP @ EvaluateJsonPath @ @ PutESP
LisienESP @ Evaluatz JsonPath PuESP
In 0/0 byles In 0/0 bytes 5 min) | | Name maicned G in 0/0byses
L0000 O O bytes /O bytes n 175000 S O bytes / 0 bytes & min Queued 0/00Dyies ReadWrite Q- =S N=H
Out 0/0by=s Out 0/0byes Out 0/0byes
=TSt 0 /00:00:00.000 AP U 0/00:00:00.000 5 mir Tasks/Time [RRCe el

9/26/17 13

Data Set

<Points> \ Dataflow for K-means

K-means and Dataflow

Data Set
<Updated
Centroids>

Reduce
(update
centroids)

Map (nearest
centroid
calculation)

Data Set <Initial
Centroids>

Internal Execution N
(Iteration) Nodes
Fine-Grain Corse Grain .

Workflow Nodes Coarse Grain

Coordination

J

Workflow Nodes

Another

—_— =

Job

Reduce

Dataflow
Communication

HPC
Communication

DN ENEENEEE

NN/

“Coordination Points”
lterate

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Handling of State
 State is a key issue and handled differently in systems

* MPI Naiad, Storm, Heron have long running tasks that preserve state

* MPI tasks stop at end of job

* Naiad Storm Heron tasks change at (fine-grain) dataflow nodes but all tasks
run forever

* Spark and Flink tasks stop and refresh at dataflow nodes but preserve some
state as RDD/datasets using in-memory databases

 All systems agree on actions at a coarse grain dataflow (at job level);
only keep state by exchanging data.

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Fault Tolerance and State

 Similar form of check-pointing mechanism is used already in HPC
and Big Data

* although HPC informal as doesn’t typically specify as a dataflow graph
* Flink and Spark do better than MPI due to use of database technologies;
MPI is a bit harder due to richer state but there is an obvious integrated
model using RDD type snapshots of MPI style jobs
* Checkpoint after each stage of the dataflow graph
* Natural synchronization point
* Let’s allows user to choose when to checkpoint (not every stage)

e Save state as user specifies; Spark just saves Model state which is
insufficient for complex algorithms

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Twister2 Components |

Area

Component

Implementation

Comments

Distributed Data
API

Relaxed Distributed
data set

Similar to Spark RDD

ETL type data applications; Streaming
Backup for Fault Tolerance

Streaming

Pub-Sub and Spouts as in Heron

API to pub-sub messages

Data access

Access common data sources including
file, connecting to message brokers etc.

All the above applications can use this
base functionality

Distributed Shared

Similar to PGAS

Machine learning such as graph algorithms

Memory
Task API Dynamic Task Dynamic scheduling as in AMT Some machine learning
FaaS API Scheduling FaaS
(Function as a Static Task Scheduling| Static scheduling as in Flink & Heron Streaming
Service) ETL data pipelines

Task Execution

Thread based execution as seen in Spark,
Flink, Naiad, OpenMP

Look at hybrid MPI/thread support
available

Task Graph

Twister2 Tasks similar to Naiad and Heron

Streaming and FaaS
Events

Heron, OpenWhisk, Kafka/RabbitMQ

Classic Streaming
Scaling of FaaS needs Research

Elasticity

OpenWhisk

Needs experimentation

Task migration

INDIANA UNIVERSITY

Monitoring of tasks and migrating tasks for

better resource utilization

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Twister2 Components li

Area Component Implementation Comments
L Messages Heron This is user level and could map to
Communication multiple communication
API Dataflow Fine-Grain Twister2 Dataflow Streaming

Communication

communications: MPI, TCP and RMA
Coarse grain Dataflow from NiFi,
Kepler?

Machine learning
ETL data pipelines

BSP Communication
Map-Collective

MPI Style communication
Harp

Machine learning

Execution
Model

Architecture

Spark, Flink

Container/Processes/Tasks=Threads

Job Submit API
Resource Scheduler

Pluggable architecture for any resource
scheduler (Yarn, Mesos, Slurm)

All the above applications need this
base functionality

Dataflow graph
analyzer & optimizer

Flink

Spark is dynamic and implicit

Coordination Points
Specification and
Actions

Research based on MPI, Spark, Flink,
NiFi (Kepler)

Synchronization Point.
Backup to datasets
Refresh Tasks

Security

Storage, Messaging,
execution

INDIANA UNIVERSITY

Research

Crosses all Components

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Summary of MPIl in a
HPC Cloud + Edge + Grid Environment

* We suggest value of an event driven computing model built around Cloud and HPC
and spanning batch, streaming, and edge applications

* Highly parallel on cloud; possibly sequential at the edge

 We have done a preliminary analysis of the different runtimes of MPI, Hadoop, Spark,
Flink, Storm, Heron, Naiad, HPC Asynchronous Many Task(AMT)

* There are different technologies for different circumstances but can be unified by high
level abstractions such as communication collectives

* Obviously MPI best for parallel computing (by definition)

e Apache systems use dataflow communication which is natural for distributed systems
but inevitably slow for classic parallel computing

* No standard dataflow library (why?). Add Dataflow primitives in MPI-4?

* MPI could adopt some of tools of Big Data as in Coordination Points (dataflow nodes),
State management with RDD (datasets)

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

